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Abstract—Numerical study of nonlinear heat transfer in longitudinal fins. This work aims to quantify the effects of non-simplified
situations on longitudinal fins efficiency. For this purpose a more realistic model, which has been developed here, is based on
variable profile and temperature-dependent thermophysical properties in transient two-dimensional fin with internal non-uniform
heat generation. An explicit exponential finite-difference method, conditionally stable, is extended in this study for the discretization
of the governing equations. The numerical procedure consists in solving series of nodal temperature distribution according to the
type of node, in order to reach the steady-state heat exchange. Then, the numerical simulation is used to present the sensitivity of
some parameters on efficiency. Numerical results of interest are illustrated for a direct comparison with the traditional solutions.
Extensive numerical experiments were conducted and showed that temperature-dependent heat transfer coefficient and generation
lead to a significant reduction of fin-efficiency. The simultaneous effects of parameters for this non-linear problem are not negligible.
 2001 Éditions scientifiques et médicales Elsevier SAS
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non uniform generation

Résumé—Le but du travail décrit dans cet article est de déterminer l’effet des conditions non simplifiées—admises sous forme
d’hypothèses non classiques—sur les efficacités des ailettes longitudinales. Pour cet objectif, un modèle plus réaliste est obtenu en
considérant l’ailette en transitoire, en 2D, et à propriétés thermophysiques variables avec la température et/ou la position. Le profil est
aussi variable et l’ailette est assimilée à une source interne de chaleur. Une méthode des différences finies exponentielles, de nature
explicite, conditionnellement stable, et étendue au cas considéré, est utilisée pour la discrétisation des équations. La procédure
numérique consiste à calculer une série de distributions nodales des températures suivant le type du nœud, pour accéder au régime
permanent. La simulation a permis ensuite d’obtenir l’effet des différents paramètres sur l’efficacité. Les résultats sont illustrés sous
forme de courbes variées et sont mis en comparaison directe avec les données classiques. Dans les conditions d’expérimentation
numérique, la sensibilité de l’efficacité est extrême pour la source et pour le coefficient d’échange thermique dépendants de la
température. L’effet global des non-linéarités n’est pas négligeable.  2001 Éditions scientifiques et médicales Elsevier SAS

ailette / efficacité / non-linéaire / différences finies exponentielles / température / sensibilité / coefficient d’échange /
profil / source non uniforme

Nomenclature

a aire de la section normale à l’axex de
l’élément dV . . . . . . . . . . . . . . . . . m2

A aire d’échange avec le milieu ambiant (deux
faces de l’ailette) . . . . . . . . . . . . . . . m2

Bi nombre de Biot= αw0/(2λ)
C capacité calorifique volumique . . . . . . . . J·m−3·K−1

∗ Correspondance et tirés à part.
E-mail addresses: mn_bouaziz@email.com,

najibbouaziz@multimania.fr (M.N. Bouaziz), s_hanini@hotmail.com
(S. Hanini).

C0 terme constant dans la dépendance en
température de la conductivité

C1 coefficient de dépendance en température
de la conductivité . . . . . . . . . . . . . . . . K−1

F fonction analytique complexe
g coefficient de dépendance en température

de la source . . . . . . . . . . . . . . . . . . . K−1

G nombre de génération= W0w0/(2αT
∗)

H expression complexe de discrétisation spatiale W·K−1

k nombre d’itérations
K produit de la conductivité par la surface . . . . W·m·K−1

l dimension de l’ailette suivant l’axey . . . . . m
L dimension de l’ailette suivant l’axex . . . . . m
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m pas du réseau carré(�x = �y) . . . . m
m paramètre de l’ailette rectangulaire

=√
2α/(λw0) . . . . . . . . . . . . . m−1

M nombre de nœuds suivant l’axey
N nombre de nœuds suivant l’axex
N∗ paramètre de l’ailette rectangulaire

= (mλ − α)/(mλ + α)

q puissance volumique de la source . . W·m−3

S aire de la section normale à l’axey . . m2

t temps . . . . . . . . . . . . . . . . . . s
T température de l’ailette à partir de

l’ambiante . . . . . . . . . . . . . . . K
T ∗ température à la base de l’ailette à partir

de l’ambiante . . . . . . . . . . . . . . K
T ∗

0 terme constant deT ∗ . . . . . . . . . K
u variable d’intégration
V volume de l’ailette . . . . . . . . . . . m3

w épaisseur de l’ailette . . . . . . . . . . m
W0 terme constant dans la dépendance en

température de la source . . . . . . . . W·m−3

x, y, z coordonnées . . . . . . . . . . . . . . m

Lettres grecques

α coefficient d’échange thermique . . . W·m−2·K−1

β coefficient de dépendance en
température deT ∗ . . . . . . . . . . . m−1

γ nombre adimensionnel= βl/2
δ opérateur de discrétisation des termes

d’espace
� symbole d’écart
�τ pas de temps . . . . . . . . . . . . . . s
ε critère d’arrêt du calcul
η efficacité de l’ailette
λ conductivité thermique . . . . . . . . W·m−1·K−1

µ expression de discrétisation temporelle K·W−1

ξ nombre adimensionnel
= L1,5(α/(λLw0))

0,5

= (L/w0)(2Bi)
0,5

ξ∗ nombre adimensionnel de correction
= (L+ w0/2)1,5(α/(λLw0))

0,5

Indices

a ambiant
c « Churchill »
c constant (pourα)
i indicateur de position dans le réseau

suivant l’axex
j indicateur de position dans le réseau

suivant l’axey
M1, M2 variante analytique
pc parabolique convexe
rect rectangulaire
tri triangulaire
x suivantx

y suivanty
0 base
1 température
2 efficacité

Exposants

h instant de calcul
n paramètre de sommation
p, r, s paramètres de sommation
ν coefficient de dépendance en température deα

+ à la positioni + 1/2 ouj + 1/2
− à la positioni − 1/2 ouj − 1/2
∗ spécifique au nœud frontière

1. INTRODUCTION

L’emploi des ailettes comme moyen d’accroissement
des échanges thermiques se justifie dans des domaines
aussi divers que le nucléaire, l’aéronautique, l’espace ou
l’électronique. . .

Bergles [1] décrit les techniques d’intensification dis-
ponibles et les perspectives d’amélioration. L’ailette, base
des surfaces auxiliaires, continue d’être la plus usitée.

En particulier, dans l’industrie frigorifique, où la bat-
terie ailetée occupe une place privilégiée, le développe-
ment est tel que les constructeurs réservent des budgets
de plus en plus importants à la recherche d’un pouvoir
d’échange maximal et d’une compacité élevée [2]. L’évo-
lution bénéfique de cette augmentation des échanges par
ailettes mène à des surcoûts d’étude dus à la voie expéri-
mentale. En globalité, quel que soit l’axe d’intérêt choisi,
la connaissance précise des conditions physiques et ther-
miques est primordiale en ingénierie pour l’obtention des
résultats probants et précis.

Dans la pratique du dimensionnement des échangeurs,
l’efficacité de l’ailette, paramètre essentiel dans l’évalua-
tion des coefficients globaux des transferts, est sommai-
rement adoptée sur la base de modèles analytiques re-
posant sur un ensemble d’hypothèses idéalisées [3]. Ha-
seler [4], par exemple, utilise la théorie classique des ai-
lettes (paramètres thermophysiques considérés constants)
pour calculer la conduction transversale dans les échan-
geurs multi-courants.

La déduction de cette efficacité s’effectue à partir
des formules de Gardner [5], des expressions simplifiées
de Churchill [6]. Ullman et Kalman [7] ont présenté
des abaques pour les ailettes annulaires à partir des
mêmes hypothèses classiques et dans une perspective
d’optimisation de profil.
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Bien que les ailettes longitudinales à profil uniforme
soient les plus utilisées en raison des avantages de
fabrication, celles à profil variable sont aussi d’un grand
intérêt pratique, en accord avec la minimisation du poids
de matière utilisée.

Shah [8] insiste fortement sur la détermination précise
de l’efficacité. L’impact énergétique d’une sous ou sur
évaluation de ce paramètre à hauteur de dix pour-cent
se traduit par une perte ou par un gain du dixième de la
production mondiale de pétrole [9].

Les études avancées sont assez nombreuses. Elles
remédient aux approches primaires dont les résultats
sont souvent infirmés par les mesures expérimentales,
conduites par Hu et Jacobi [9] et analysées par Shah [8]
qui a signalé que cette simplification de modèles est
non valide si l’efficacité est inférieure à 0,8. Ces tra-
vaux se caractérisent par un traitement sélectif vis à vis
des hypothèses et s’appuient généralement sur des sché-
mas théoriques à solutions le plus souvent analytiques.
Look [10], Ju et al. [11], s’intéressent à l’ailette bidimen-
sionnelle avec une variété pour le coefficient d’échange
selon le premier auteur. La conductivité thermique dé-
pendante de la température est prise en compte pour les
ailettes circulaires par Razelos et Imre [12], et pour les
ailettes longitudinales par Aziz [13]. De même, Zubair
et al. [14] considèrent cette dernière condition dans une
étude d’optimisation. Plusieurs études telles celles de
Han et Lefkowitz [15], Unal [16, 17], Laor et Kalman
[18], ont été développées en tenant compte d’un coeffi-
cient d’échange thermique dépendant de la position ou de
la température. Une approche différente est tentée, dans
le cas d’un coefficient d’échange variable avec la posi-
tion, par Sparrow et Chyu [19], Sparrow et Acharya [20],
Huang et Chen [21], sous forme de problèmes conjugués
de conduction–convection. Le cas d’une ailette dissipant
de la chaleur à partir d’une source interne uniforme a été
traité par Minkler et Rouleau [22], et par Aziz [23]. Unal
[24] a présenté des expressions analytiques pour l’ailette
à source non uniforme. D’autres conditions spécifiques
du fonctionnement de l’ailette ont été étudiées. Enfin,
Cotta et Ramos [25] ont proposé récemment une solu-
tion hybride sous quelques hypothèses non simplifiées, et
Huang et Shah [26] dans une étude à caractère explora-
toire ont conclu pour une ailette rectangulaire, que seul le
coefficient d’échange supposé constant mène à de grosses
erreurs.

Il est important de noter, qu’outre le fait que ces tra-
vaux ne répondent qu’à une classe restreinte de pro-
blèmes caractérisés par un ou deux paramètres variables
au plus, ces derniers ne le sont qu’avec une sous variable
(coordonnées, température). En clair, et après revue cri-

tique des publications, la majorité des auteurs s’accorde
sur les disparités par rapport aux efficacités convention-
nelles dès qu’une non-linéarité est incluse.

C’est aussi cette absence de travaux quant à la prise
en charge de la quasi-totalité des hypothèses et profils,
qui est à l’origine de nos recherches, motivées par
l’apparition de tels équipements où les conditions de
fonctionnement sont complexes et extrêmes. De plus les
modèles analytiques cités sont souvent limités à l’ailette
rectangulaire et sans échange de chaleur à son extrémité.
Dans cette étude, l’accent est mis sur le développement
d’un programme à partir d’un modèle général et pouvant
présenter toutes les possibilités d’exploration de l’effet
des hypothèses non classiques sur les efficacités.

Il convient de préciser que dès lors la validation du
modèle effectué, le code de calcul mis au point, basé sur
les différences finies exponentielles [27] et adaptés à ce
type de problèmes, peut être considèré comme un outil
prévisionnel justifié par sa capacité à analyser l’influence
des divers paramètres. Entre autres, l’apparition des
variations locales des propriétés thermophysiques n’est
pas, a priori, sans incidence notable sur les efficacités, et
l’estimation globale de leurs effets n’est pas bien cernée.
L’objectif de cette étude est l’investigation numérique de
l’effet des non-linéarités sur les efficacités.

2. FORMULATION MATHÉMATIQUE

La figure 1 représente le schéma d’une ailette convec-
tive, longitudinale et à section uniforme suivant l’axey et
quelconque suivant l’axex. L’élément de volume néces-
saire aux calculs est aussi montré.

L’écriture de l’équation de l’énergie de l’ailette est
formulée sous les hypothèses non classiques suivantes :

(a) Les transferts sont bidimensionnels et non per-
manents.

(b) Les propriétés thermophysiques : la conductivité
thermique et la chaleur spécifique évoluent selon la
température.

(c) Le coefficient d’échange n’est pas constant, il
est fonction à la fois de la position et de la température.

(d) L’ailette est une source interne de chaleur de
puissance variable avec la température.

(e) Les transferts de convection à l’extrémité ne
sont pas négligés.

(f) La température à la base de l’ailette varie suivant
l’axe y.

(g) L’épaisseur de l’ailette est variable transversale-
ment et uniforme longitudinalement.
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Figure 1. Modèle physique de l’ailette, définitions géométriques.
Figure 1. Schematic diagram of fin, geometrical definitions.

Par contre, les hypothèses simplificatrices habituelles
suivantes sont maintenues :

(h) La longueur dans le sens transversal est assez
grande par rapport à l’épaisseur de l’ailette (i.e., mince
ou Bi < 0,1 avec une erreur inférieure à 1% [28]).

(i) La température du fluide ambiant est uniforme.
(j) La résistance de contact entre l’ailette et la paroi

mère est nulle.
(k) L’espace entre deux ailettes consécutives n’est

pas très court et l’épaisseur du tube support n’est pas très
mince [29].

* Equation de l’énergie :

Par bilan énergétique sur le volume dV et compte
tenu des hypothèses admises, l’équation quasi linéaire
décrivant les principaux modes de transfert thermique,
l’accumulation et la production d’énergie, s’écrit :

∂

∂x

[
λa(x)

∂T

∂x

]
dx + dS(x)

∂

∂y

[
λ
∂T

∂y

]
dy

+ q dV − α dAT = C dV
∂T

∂t
(1)

où les notations conventionnelles sont définies dans
la nomenclature, avecT la température de l’ailette
considérée à partir de l’ambianteTa, et dA représente la
surface totale d’échange de l’ailette (sur les deux faces).

Pour compléter la description du problème, et en
accord avec l’hypothèse (f), les conditions initiale et aux
limites les plus fréquemment rencontrées sont retenues.
Les non-linéarités issues des propriétés thermophysiques
sont conservées.

* Condition initiale :

T = 0 à t = 0 (2)

* Conditions aux limites :

T = T ∗(y) enx = 0 (3a)

−λ
∂T

∂x
= αT enx = L (3b)

−λ
∂T

∂y
= −αT eny = 0 (3c)

−λ
∂T

∂x
= αT eny = l (3d)
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L’efficacité compare essentiellement la performance ther-
mique d’échange d’une ailette en rapport à celle présen-
tant une conductivité infinie. Par conséquent nous la dé-
finissons par la relation suivante :

η =
∫∫

A αT dA− ∫∫∫
V q dV∫∫

A αT ∗ dA
(4)

3. DISCRÉTISATION ET PROCÉDURE
NUMÉRIQUE

3.1. Stratégie du traitement numérique

Les équations à résoudre étant non linéaires, il est im-
possible de trouver une solution analytique dans un cas
aussi général. En vue de la résolution numérique par dif-
férences finies de l’équation (1) sous les conditions (2),
(3a)–(3d), le domaine de calcul est couvert par un réseau
de points pour lesquels les paramètres thermophysiques
sont fixés et où les températures sont à calculer. Des mo-
difications de l’écriture de l’équation (1) et spécifiques
aux nœuds situés sur les frontières de l’ailette sont re-
portées autableau I, terme par terme, pour la conduc-
tion, production de chaleur, convection et enfin accumu-
lation. Un traitement particulier est ainsi appliqué selon le
type de nœud limite. Lorsque le nœud est de positionN ,
la section de transfert équivalente est notée par un asté-
risque.

Les éléments géométriques sont d’abord remplacés
par leurs expressions discrétisées. Ensuite, les équa-
tions (1)–(3d) sont à leur tour discrétisées en prenant un
schéma totalement explicite par l’intermédiaire des dif-
férences finies exponentielles proposées initialement par
Battacharya puis par Handschuh [30]. La méthode ex-
périmentée ultérieurement par Handschuh et Keith [31]
pour les équations non linéaires en conduction pure à 1D,
est étendue dans la présente étude aux termes de convec-
tion et de source suivant une conduction 2D en tenant
compte des hypothèses (a)–(k). Le principe de la méthode
consiste à introduire pour les équations paraboliques une
fonction de la température (lnT étant la plus appropriée),
à multiplier les termes d’espace et du temps par la déri-
vée de la fonction choisie, pour aboutir à une expression
discrétisée sous forme exponentielle.

Ce choix est justifié par la facilité de programmation et
compte tenu de l’importante place mémoire ainsi que du
temps de résolution assez long des systèmes d’équations
résultant d’un schéma implicite. On note dans un tel
cas, que la procédure de Lees [32] est incontournable

pour les non-linéarités du problème aboutissant aux
matrices tridiagonales. Bouaziz et al. [33] ont envisagé
cette possibilité pour le présent modèle. Par ailleurs, le
problème considéré ne peut être résolu par les méthodes
semi-analytiques limitées aux modèles simplifiées [34],
quant aux techniques expérimentales, elles sont assez
délicates à mettre en œuvre, en raison des difficultés
liées à l’interaction des instruments de mesure avec les
écoulements adjacents à l’ailette. De ce fait, il ne sera
pas toujours possible d’effectuer des comparaisons fines
dans ces conditions entre les prévisions numériques et les
résultats des expériences.

En considérant un réseau carré, l’équation (1) discré-
tisée, est donc sous forme explicite :

T h+1
i,j = T h

i,j exp[µH ]hi,j (5)

avec

µh
i,j =

[
�τ

C dV

]h
i,j

(6a)

et

Hh+1
i,j =

[[
(δx + δy)

1

�x
− α dA

]h
i,j

T h
i,j

+ (q dV )hi,j

]
1

T h
i,j

(6b)

Pour faciliter la programmation de cette équation, on
regroupe dans letableau II les expressions deµ et
H pour les nœuds intérieurs et aux frontières. Les
conductivités et les surfaces d’échange sont calculées
suivant le nœud considéré et les nœuds adjacents à partir
des températures et sections moyennes respectivement.

L’amélioration de la précision est possible par l’intro-
duction d’un sous-pas de temps. Le nombre d’itérations k
conséquent, assure aussi la stabilité de la méthode qui est
trouvée similaire aux schémas explicites classiques [31].

Ainsi, l’équation (5) est réécrite comme suit :

T h+1
i,j = T h

i,j exp

{
µh

i,j

(k + 1)

k∑
p=0

H
(h+p/k+1)
i,j

}
(7)

La discrétisation est à deux pas en « avant » pour le terme
temps, comme montrée dans l’équation (6a) et centrale
pour les termes d’espaceδx et δy (tableau II).

Dans tous les calculs de l’expérimentation numérique,
nous avons retenu des grilles de 16× 16 car un maillage
plus fin n’apportait pas de changement significatif. Le
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TABLEAU I / TABLE I
Equation de l’énergie et ses équivalentes pour les nœuds aux frontières.

Equivalent energy equation for nodes on the fin-boundary.

Type de nœud,
position Schéma Termes de

conduction
Terme de
production

Terme de
convection

Terme
d’accumulation

Nœud
intérieur
i = 1, . . . ,N − 1
j = 1, . . . ,M − 1

∂

∂x

[
λa(x)

∂T

∂x

]
dx

dS(x)
∂

∂y

[
λ
∂T

∂y

]
dy

q dV −α dAT C dV
∂T

∂t

i = 0
j = 0, . . . ,M Température prescriteT ∗(y)

i = 1, . . . ,N − 1
j = 0

∂

∂x

[
λa(x)

∂T

2∂x

]
dx

λdS(x)
∂T

∂y

q dV/2 −α[dS + dA/2]T C dV
∂T

2∂t

i = 1, . . . ,N − 1
j = M

∂

∂x

[
λa(x)

∂T

2∂x

]
dx

−λdS(x)
∂T

∂y

q dV/2 −α[dS + dA/2]T C dV
∂T

2∂t

i = N
j = 1, . . . ,M − 1

−λa∗(x) ∂T
∂x

dS∗(x)
∂

∂y

[
λ
∂T

∂y

]
dy

q dV ∗ −α[a∗(x) + dA∗]T C dV ∗ ∂T
∂t

i = N
j = 0

−λa∗(x) ∂T

2∂x

λdS∗(x)
∂T

∂y

q dV ∗/2 −α[a∗(x)/2+ dA∗/2
+ dS∗]T C dV ∗ ∂T

2∂t

i = N
j = M

−λa∗(x)
∂T

2∂x

−λdS∗(x) ∂T
∂y

q dV ∗/2 −α[a∗(x)/2+ dA∗/2
+ dS∗]T C dV ∗ ∂T

2∂t

pas de temps a été fixé à 30 s pour l’expérimentation
de notre code de calcul et le nombrek a été trouvé
suffisant pour la valeur 1001. Aucune anomalie n’a été
constatée lors de l’utilisation du code avec le choix de
ces valeurs.

Pour les distributions des températures, le critère
d’arrêt est fixé à 10−8 selon une norme matricielle de
type Holder, quant à celui retenu pour l’efficacité, il est
de l’ordre de 10−4.

Soit :

ε1 =
√∑

i,j |T n+1
i,j − T n

i,j |2√∑
i,j |T n+1

i,j |2
≤ 10−8 (8)

et

ε2 = ηm+1 − ηm

ηm+1 ≤ 10−4 (9)

n, m étant ici les indices d’itérations.
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TABLEAU II / TABLE II
Expressions de µ et H de l’équation de l’énergie (réseau carré).

Expressions of µ and H of energy equation (square grid).

µh
i,j [K/W] Hi,j [W/K]

i = 1, . . . ,N − 1
�τ

C�V

[
[K+

x Ti+1,j + K+
y Ti,j+1 + K−

x Ti−1,j + K−
y Ti,j−1]

j = 1, . . . ,M − 1 −[K+
x + K+

y +K−
x + K−

y + α�x�A]Ti,j + q�x�V
]h

/�xT h
i,j

i = 1, . . . ,N − 1
�τ

C�V

[
[K+

x Ti+1,j + 2K+
y Ti,j+1 + K−

x Ti−1,j ]
j = 0 −[K+

x + 2K+
y + K−

x + α�x[�A + 2�S]]Ti,j + q�x�V
]h

/�xT h
i,j

i = 1, . . . ,N − 1
�τ

C�V

[
[K+

x Ti+1,j + 2K−
y Ti,j−1 + K−

x Ti−1,j ]
j = M −[K+

x + 2K−
y + K−

x + α�x[�A + 2�S]]Ti,j + q�x�V
]h

/�xT h
i,j

i = N
�τ

C�V ∗
[
[K−

x Ti−1,j + K+
y Ti,j+1 + K−

y Ti,j−1]
j = 1, . . . ,M − 1 −[K−

x + K+
y +K−

y + α�x[�A∗ + a∗]]Ti,j + q�x�V ∗
]h

/�xT h
i,j

i = N j = 0
�τ

C�V ∗
[
[K−

x Ti−1,j + 2K+
y Ti,j+1] − [K−

x + 2K+
y + α�x[�A∗ + a∗ + 2�S∗]]Ti,j + q�x�V ∗

]h
/�xT h

i,j

i = N j = M
�τ

C�V ∗
[
[K−

x Ti−1,j + 2K−
y Ti,j−1] − [K−

x + 2K−
y + α�x[�A∗ + a∗ + 2�S∗]]Ti,j + q�x�V ∗

]h
/�xT h

i,j

3.2. Programmation de la méthode

Nous avons écrit un programme traduisant le modèle
en Fortran 77. Il est développé pour résoudre les équa-
tions discrétisées et il est structuré d’abord par l’intro-
duction des 26 matrices de géométrie et des paramètres
thermophysiques qui sont choisis conformément aux hy-
pothèses. Le calcul est poursuivi pour la détermination
de la distribution des températures selon l’équation (7) et
ses équivalentes pour les nœuds frontières. Les itérations
couplées aux conditions d’arrêt de calcul citées permet-
tent la sortie d’une distribution par pas de temps, sur la
base de laquelle l’efficacité de l’ailette est calculée se-
lon l’équation (4). Un régime permanent s’établit déter-
minant une valeur finale de cette efficacité.

La caractéristique principale du code mis au point est
l’intégration à tous les niveaux du type de nœud.

3.3. Validation

Pour valider le présent schéma numérique, les solu-
tions obtenues sont comparées à celles existantes dans
la littérature pour les modèles classiques. Deux solutions
sont choisies comme références et dont les expressions

exactes ou approchées de l’efficacité sont parfaitement
connues. Dans les deux cas, l’ailette est rectangulaire
à 1D, le régime est permanent, les propriétés thermophy-
siques sont considérées constantes et il n’y a pas de pro-
duction de chaleur interne. Les hypothèses (h)–(k) sont
valables et l’extrémité de l’ailette est convectante (non
isolée thermiquement). La température à la base de l’ai-
lette est considérée constante.

* La première solution est représentée par l’expres-
sion approchée de Churchill où l’efficacité est de la
forme [35] :

ηc = [(
1+ (mL)n

)n−1]−1 (10)

avecn = 2,5 dans le cas proposé.

* La seconde plus exacte, présente deux variantes, M1
et M2.

** Pour M1, on néglige à l’extrémité de l’ailette les
transferts thermiques de conduction–convection dans la
section considérée, contrairement à l’hypothèse (e). La
distribution des températures est donnée dans [36] :

T (x) = T ∗N∗ exp[−mL(2− x/L)] + exp[−mL(x/L)]
N∗ exp[−2mL] + 1

(11)
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et l’efficacité est obtenue par intégration suivant l’équa-
tion (4) :

ηM1 = [1− exp(−mL)][N∗ exp(−mL)+ 1]
mL[N∗ exp(−2mL)+ 1] (12a)

ou bien :

ηM2 = [1− exp(−√
2ξ)][N∗ exp(−√

2ξ) + 1]√
2ξ [N∗ exp(−2

√
2ξ)+ 1] (12b)

avec le nombreξ qui exprime le rapport de la résistance
interne (de conduction) à celle externe (de convection)
pour les dimensions fixées de l’ailette.

** Pour M2, l’hypothèse (e) est admise. Nous utilisons
alors la procédure de Harper et Brown qui consiste à
introduire une longueur fictiveL + w0/2, et l’efficacité
corrigée s’écrit :

ηM2 = [1− exp(−√
2ξ∗)][N∗ exp(−√

2ξ∗)+ 1]√
2ξ∗[N∗ exp(−2

√
2ξ∗)+ 1] (13)

Pour les ailettes rectangulaires de dimensions fixéesL et
w0, les efficacitésη calculées en fonction du paramètre
ξ et à partir du présent modèle sont reportées avec celles
ηc ηM1 etηM2 dans lesfigure 2(a)–(c) pour les épaisseurs
d’ailettesw0 = 0,005 m, 0,01 m et 0,03 m respectivement
(les épaisseurs indiquées permettant seulement la correc-
tion surηM1). Afin de montrer les différences, les effica-
citésη etηM2 obtenues sont portées suivant la valeur deξ

correspondante. Nous n’avons pas reproduit les courbes
pour d’autres épaisseurs et qui présentent les mêmes al-
lures et tendances. La température de base est fixée à
T ∗ = 100◦C, la longueur de l’ailette estL = 0,05 m et la
largeurl = 0,05 m.

Comme le montrent les figures, un bon accord est
trouvé entreη et ηM2 dans tous les cas. Par contre plus
l’ailette est épaisse, plus les valeursηc et ηM1 s’écartent
du résultat exact. Par conséquent, les approximations
pour l’ailette rectangulaire sont à reconsidérer dans de
telles conditions.

On relève un décalage des efficacités entre les solu-
tions analytiques de références et le présent modèle vers
les très faibles valeurs deξ . Si l’épaisseur de l’ailette aug-
mente, cet écart s’accentuefigure 2 (a) et (c). L’examen
attentif des deux modèles mis en comparaison, nous per-
met d’expliquer le phénomène par l’approximation effec-
tuée lors de la détermination dem (et donc deξ ). En
effet, on néglige dans la théorie classique la convection
par les sections latérales (w0L). Dans notre formulation,
les échanges par ces surfaces sont incorporés (tableau I
et II).

4. RÉSULTATS ET DISCUSSION

Partant de la validation du code proposé, une série
d’expérimentations numériques a été conduite dans le cas
de l’ailette rectangulaire. Nous examinons d’abord les
transferts bidimensionnels et le niveau de correction à ap-
porter suivant l’épaisseur de l’ailette. Ensuite, nous ana-
lysons la sensibilité de l’efficacité aux paramètres ther-
mophysiques variant avec la température. Nous traitons
le cas de la source interne de chaleur, et nous montrons
l’effet d’une production uniforme puis d’une source va-
riable avec la température. Enfin, les performances de
trois sections sont comparées et nous appliquons le mo-
dèle proposé au problème complexe de la conjugaison
des non-linéarités et de la température.

4.1. Effet 2D

On n’a pas trouvé des variations dans les distributions
des températures suivant l’axey lors de la simulation
avec une température à la base de l’ailette constante. Par
conséquent, l’efficacité calculée est identique à celle du
modèle 1D.

On peut alors se proposer de rechercher l’effet sur
l’efficacité d’une variation linéaire deT ∗ avec y. En
posonsT ∗(y) = 100[1 + βy] et pour des valeurs deβ
dans l’intervalle[−1,−10], les résultats sont presque
les mêmes. Dans tous les cas, une différence absolue de
l’ordre de 10−5 est observée entre l’efficacitéη et celle
calculée suivant le modèle unidimensionnel.

Ce résultat numérique nécessite une analyse (en an-
nexe) sur un cas équivalent à celui considéré. On montre
en effet que l’efficacité ne dépend pas deβ . Cependant
il y a un rapport de 1+ γ entre le flux de chaleur à la
base, les températures, et les mêmes grandeurs corres-
pondantes calculées à partir deT ∗

0 = 100◦C.

4.2. Épaisseurs des ailettes

Le regroupement des courbes (figure 2(a)–(c)) des
valeurs deη dans lafigure 3, montre que les efficacités
diminuent sensiblement à mesure que les épaisseurs des
ailettes rectangulaires augmentent en rapport à celles
calculées sans convection à l’extrémité. Ces données sont
aussi complétées pourw0 = 0,02 m.

La même figure montre aussi que cette tendance est
conservée pour les ailettes à usage pratique (η ≥ 0,8). On
peut déduire également, qu’il est avantageux de recourir
à des ailettes assez longues et minces en conservant un
niveau d’efficacité acceptable.
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(a) (b)

Figure 2. (a) Efficacités comparées des quatre modèles
(w0 = 0,005m) ; (b) Efficacités comparées des quatre modèles
(w0 = 0,01 m) ; (c) Efficacités comparées des quatre modèles
(w0 = 0,03m).
Figure 2. (a) Comparison between four models for fin-efficiency
(w0 = 0.005 m); (b) Comparison between four models for fin-
efficiency (w0 = 0.01m); (c) Comparison between four models for
fin-efficiency (w0 = 0.03m).

(c)

4.3. Conductivité thermique

Elle est considérée souvent constante pour que le
modèle mathématique correspondant au problème posé
soit résoluble du fait de la linéarité des équations.

Cependant, la plage de variations des températures
n’est pas toujours réduite et par conséquent dans certains
cas, une dépendance de ce paramètre avec la température
n’est pas à ignorer. De plus, pour les échangeurs utilisés
en cryogénie de type plaques ailetées, l’évolution de la
conductivité est très importante pour une légère variation
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Figure 3. Correction de l’efficacité pour différentes épaisseurs
(ailette rectangulaire).
Figure 3. Correction of efficiency for various thicknesses
(rectangular fin).

de la température [3]. Nous l’admettrons dans notre
code sous forme polynomiale [37], limitée à l’expression
linéaire dans le cas présent :

lnλ(T ) = C0 + C1T

Deux cas sont comparés avec le cas initial en 3.3. Ils dif-
fèrent les uns des autres par la valeur du coefficientC1
de la formule précédente et sont relatifs à l’Aluminium,
le plus utilisé dans les batteries ailetées [2]. Lafigure 4
montre, ce qui est physiquement évident, une améliora-
tion des efficacités selon la valeur positive deC1. On re-
trouve un fait déjà constaté sur les efficacités obtenues
à partir des données expérimentales [38]. Il correspond
dans la présente étude à une quantification précise.

L’analyse des courbes permet de formuler quelques
remarques. Tout d’abord, le fait que cette incidence est
minime pour les ailettes de grandes conductivités ther-
miques et/ou faibles coefficients de transfert. Ensuite, il
semble ici que l’usage des conductivités moyennes (arith-
métique) soit une bonne approximation. Une conductivité
optimale est suggérée par les auteurs [39] pour une pré-
cision plus grande.

Figure 4. Influence du coefficient C1 de la conductivité ther-
mique sur l’efficacité.
Figure 4. Influence of the thermal conductivity coefficient C1
on efficiency.

4.4. Coefficient d’échange

Les études expérimentales ont montré que des varia-
tions substantielles du coefficient de transfert ont lieu
le long de l’ailette. On attribue ces variations aux non-
uniformités des distributions des vitesses et températures
des écoulements. L’interaction très forte de la dynamique
du fluide et du transfert de chaleur mène aux problèmes
couplés. Il existe de nombreuses publications traitant
cette dépendance spatiale du coefficient, mais peu se sont
intéressées à la dépendance en température. Unal [17] dé-
termine analytiquement les efficacités pour quelques cas
limités et spécifiques à l’ailette rectangulaire et adiaba-
tique à son extrémité. Pour le cas général, le problème ne
peut être traité que numériquement comme l’admet cet
auteur.

L’examen de la formule (4) montre une très grande in-
fluence du coefficient du transfert, puisqu’il conditionne
à la fois l’efficacité (s’il n’est pas considéré constant) et
les distributions de températures. Ces dernières gouver-
nent à leur tour les efficacités. On montre à lafigure 5 les
résultats de simulation pour deux cas pratiques pour une
liaison de la formeα(T ) = αcT

ν :

– l’écoulement du fluide autour de l’ailette n’est pas
forcé (ν = 0,25) ;
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Figure 5. Profils des efficacités suivant un coefficient
d’échange variable avec la température.
Figure 5. Efficiencies profiles according to temperature-
dependent heat transfer coefficient.

– l’écoulement du fluide autour de l’ailette est forcé
(ν = 0,33).

Les efficacités subissent une perte importante par rapport
à l’adoption d’un coefficient d’échange constant. On ob-
serve aussi, une incurvation des courbes à partir de cer-
taines valeurs deξ . On constate un écart significatif pour
ξ compris entre 0,4 et 1,0, et l’allure des courbes est si-
milaire pour les différentes valeurs deν. Cette augmen-
tation du coefficient d’échange par la température pro-
voque la réduction de la résistance spécifique surfacique
de la convection, et par conséquent une perte d’efficacité.

4.5. Ailette : source interne de chaleur

La figure 6 illustre le cas des ailettes caractérisées
par l’existence d’une source interne de chaleur uniforme.
Les courbes présentent des allures identiques à celles
déterminées par le modèle analytique de comparaison
(ηM2). Une validation supplémentaire du code est ainsi
réalisée. On observe une diminution très rapide des
efficacités quand la production de chaleur au sein de
l’ailette augmente.η perd approximativement 20% de sa
valeur pourG = 0,2.

En ce qui concerne l’effet sur l’ailette d’une source
de chaleur dépendante de la température, nous n’avons

Figure 6. Variations de l’efficacité pour différentes valeurs de
G.
Figure 6. Efficiency variations for various G.

pas trouvé de résultats dans la littérature. Dans ce sens,
nous avons simulé de telles conditions en admettant une
variation linéaire de la source avec la températureq(T ) =
W0[1 + gT ], W0 étant lié au nombre de génération
G et indirectement àξ . La figure 7 montre qu’il est
important dans l’intervalleξ ≤ 0,5 de tenir compte
d’une telle dépendance. Cependant l’influence de la
température sur l’efficacité s’estompe au-delà deξ =
0,5. Il est évident que les ailettes caractérisées par des
températures moyennes basses, et donc des efficacités
réduites, présentent un effet additionnel modéré.

4.6. Profil d’ailette

On établit la comparaison des profils rectangulaire,
triangulaire et parabolique convexe en les considérant de
mêmes dimensions (L et w0) à chaque étape de calcul.
Les résultats sont présentés à lafigure 8.

La classification des efficacités est conforme à celle
des ouvrages classiques, mais des différences sont obser-
vées :

– les courbes sont plus rapprochées les unes des autres ;

– le profil parabolique convexe se confond avec le profil
triangulaire pourξ ≤ 0,2, et au-delà de cette valeur avec
le profil rectangulaire ;

– le profil triangulaire est plus performant que les autres.
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Figure 7. Effet du coefficient g de la source interne sur
l’efficacité.
Figure 7. Effect of the heat generation coefficient g on
efficiency.

Figure 8. Comparaison entre les profils d’ailettes longitudi-
nales.
Figure 8. Comparison between profiles of longitudinal fins.

Figure 9. Influence simultanée des paramètres variables avec
la température sur les efficacités.
Figure 9. Simultaneous effect of temperature-dependent para-
meters on efficiencies.

La perte en efficacité du profil rectangulaire constatée est
vraisemblablement imputable à la prise en compte dans
notre modèle de l’hypothèse (e). La supériorité du profil
triangulaire est relevée par plusieurs auteurs. Mikk [40]
déduit ce résultat dans une approche de minimisation de
masse des ailettes.

4.7. Effet global

L’effet d’un ensemble de paramètres non constants
est illustré à lafigure 9 où la source interne de chaleur
dépendante de la température et un coefficient d’échange
variable avec la température se conjuguent pour présenter
des influences non négligeables sur les efficacités.

5. CONCLUSION

Dans la présente étude, on a établi un modèle non li-
néaire, bidimensionnel, instationnaire, décrivant les trans-
ferts thermiques dans les ailettes de profils divers, à
source interne de chaleur et à propriétés thermophysiques
variables avec la température et/ou la position. Ce modèle
est résolu ensuite numériquement par différences finies
exponentielles applicables au cas de non-linéarité. La si-
mulation numérique que nous avons présentée confirme
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d’abord les résultats analytiques des cas simplifiés usuels,
mais un écart est toutefois relevé lors de la prise en
compte du transfert d’extrémité d’une ailette rectangu-
laire. Une déduction analytique suivant la procédure de
Harper et Brown valide plus précisément notre modèle.
La condition de la température à la base de l’ailette va-
riable le long du tube, et incluse dans notre modèle, est
d’un effet négligeable sur l’efficacité. Puis, nous nous
sommes intéressés à l’influence des divers paramètres sur
l’efficacité. Pour une ailette rectangulaire, les résultats
montrent que l’augmentation de l’épaisseur se traduit par
une amélioration de l’efficacité comme cela est prouvé
classiquement, cependant une correction est nécessaire.
Outre le fait que le présent modèle permet la quantifi-
cation des effets de la variation des paramètres sur les
efficacités, les résultats obtenus soulignent la validité de
l’usage des conductivités moyennes et la perte importante
de l’efficacité de l’ailette soumise à un échange de coeffi-
cient conducto-convectif dépendant de la température de
l’interface. De plus, on ne peut ignorer l’influence de la
température lorsque l’ailette est à source interne variable.
Le modèle présenté constitue une alternative dans l’ap-
proche initiale de l’efficacité, paramètre évalué sommai-
rement lors du dimensionnement des équipements ailetés
placés dans des conditions extrêmes mais dont la conju-
gaison des effets réduit fortement la valeur.
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ANNEXE

Les transferts de chaleur pour le modèle physique
considéré sont régis par l’équation :

∂2T

∂x2
+ ∂2T

∂y2
− m2T = 0 (A.1)

et pour simplifier l’analyse, les conditions aux limites
sont :

T ∗ = T (y) enx = 0
T = 0 enx = L

T = 0 eny = 0
T = 0 eny = l

(A.2)

La solution de ce problème peut être obtenue par les
séries de Fourier [34] :

T = 2

l

∞∑
n=1

sin nπy
l

sinh[(L− x)
√
m2 + n2π2/l2]

sinh[L√m2 + n2π2/l2]

×
∫ l

0
T ∗(u)sin

nπ

l
udu (A.3a)

ou bien :

T = 2

l

∞∑
n=1

F(x, y,n)

∫ l

0
T ∗(u)sin

nπ

l
udu (A.3b)

Introduisons la loi de température à la base :T ∗(y) =
T ∗

0 (1+ βy). Si

γ = βl

2
alors ∫ l

0
T ∗(u)sin

nπ

l
udu

=



2T ∗
0 l

nπ
[1+ γ ] n = r = 1,3,5, . . . ,

2T ∗
0 l

nπ
[−γ ] n = s = 2,4,6, . . .

(A.4)

L’efficacité suivant l’équation (4) est :

η =
(∫ L

0

∫ l

0
α

2

l

[ ∞∑
r=1

F(x, y, r)
2T ∗

0 l

rπ
[1+ γ ]

+
∞∑
s=2

F(x, y, s)
2T ∗

0 l

sπ
[−γ ]

]
dx dy

)

× (
αT ∗

0 lL[1+ γ ])−1
(A.5)

En portantF(x, y, s) suivant l’équation (A.3a) et en in-
tégrant par rapport ày, le second terme du numérateur de
(A.5) s’annule (s, étant un nombre pair) ; le premier terme
est strictement positif. Par conséquent, l’équation (A.5)
se simplifie etη ne dépend pas deβ .
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Numerical study of nonlinear heat transfer in longitudinal fins

Using a two-dimensional longitudinal fin with vari-
able profile, heat internal generation, as a physical model
(figure 1), the authors propose a mathematical formula-
tion of unsteady-state thermal transfer in convective fin.
For this non-classical fin, the admitted assumptions are
made in order to obtain a more realistic description of the
heat transfer:

– thermophysical properties are temperature-dependent
and/or position: thermal conductivity, specific heat, heat
transfer coefficient;

– the internal heat generation is also temperature-depen-
dent;

– the exchange heat in the tip fin is not ignored.

However, the fin is considered thin so that no variation
temperature occurs in the vertical direction. We consider
that the spacing fin assembly is sufficient to neglect flow
effect.

With the foregoing as background, the governing en-
ergy equation is established and pertinent boundary con-
ditions are considered under temperature-dependent pa-
rameters. The discretization of these equations is carried
out using an explicit numerical method. Several numeri-
cal procedures are available throughout the literature, but
they are not applied for high nonlinear formulation. The
methodology of Lees based on three level time is possi-
ble and leads to systems of algebraic equations that have
a tridiagonal structure, but it requires enormous compu-
tations. Direct method is preferred in this case because its
combines accuracy and little computer-time.

A numerical technique based on exponential finite–
difference is applied for solving equations, which are
specified for each type of node (table I and II). The
method used by Battacharya and Handschuh is extended
to the nonlinear problem with variable terms like convec-
tion and heat internal generation. The main objective is to
determine efficiency of fins that are sensitive to tempera-
ture distribution and to heat transfer coefficient.

A computation code in FORTRAN is then developed
to solve the distributions of temperature and for fins ef-
ficiencies. The stability of the explicit scheme is satis-
fied by adding an internal iteration parameter in each
sequence. The numerical procedure consists in solving
a series of transient described thermal transfer problem
in order to obtain a steady-state fin efficiency when the
difference between two consecutive results are less than
prescribed.

Some classical heat transfer numerical experiments
are conducted in order to illustrate the validity of the
present code. Temperature distributions and fin efficien-
cies results are in good agreement with those analytically
known, for both heat transfer in fin with and without heat
internal generation and for performance of various fin
profile as well (figures 2(a)–(c), 3, 6 and8). The authors
point out that their calculation code may be safely used if
a good iteration parameter is chosen.

We found that no variation on efficiency appear when
non uniform temperature is prescribed at the fin base.

Then, different effects such as temperature-dependent
thermal conductivity, variable heat transfer coefficient
and internal heat generation are discussed. Sensitivity
of those parameters allows us to observe mainly the
effect of temperature on efficiencies. We observe that
arithmetic mean is satisfactory when analysing variable
thermal conductivity with temperature (figure 4). The
heat transfer coefficient is sensitive to temperature and
its influence on efficiency is too large. In addition, it is
worth mentioning that the effect of this parameter is also
the more critical as demonstrated by relevant literature
for the non-uniformity (figure 5). We determine that
a significant effect is found for an internal temperature-
dependent heat generation on efficiency, particularly for
a thin fin (figure 7).

These different effects lead to consider a new ap-
proach when designing real heat exchangers with plate-
fin. Our results for the simultaneous effects showed a pro-
found discrepancy with the classical solution (figure 9).
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